首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   84837篇
  免费   9956篇
  国内免费   8829篇
化学   33289篇
晶体学   422篇
力学   6984篇
综合类   1420篇
数学   27024篇
物理学   34483篇
  2023年   771篇
  2022年   1218篇
  2021年   1718篇
  2020年   1970篇
  2019年   2110篇
  2018年   1827篇
  2017年   2150篇
  2016年   2536篇
  2015年   2426篇
  2014年   3355篇
  2013年   5851篇
  2012年   3814篇
  2011年   4350篇
  2010年   3729篇
  2009年   4864篇
  2008年   5566篇
  2007年   5728篇
  2006年   5343篇
  2005年   4650篇
  2004年   4070篇
  2003年   4137篇
  2002年   3652篇
  2001年   3065篇
  2000年   2973篇
  1999年   2601篇
  1998年   2425篇
  1997年   1977篇
  1996年   1706篇
  1995年   1590篇
  1994年   1467篇
  1993年   1241篇
  1992年   1215篇
  1991年   928篇
  1990年   754篇
  1989年   680篇
  1988年   593篇
  1987年   464篇
  1986年   405篇
  1985年   485篇
  1984年   459篇
  1983年   226篇
  1982年   370篇
  1981年   418篇
  1980年   314篇
  1979年   306篇
  1978年   227篇
  1977年   210篇
  1976年   165篇
  1974年   114篇
  1973年   113篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
1.
Different strategies for the preparation of efficient and robust immobilized biocatalysts are here reviewed. Different physico-chemical approaches are discussed.i.- The stabilization of enzyme by any kind of immobilization on pre-existing porous supports.ii.- The stabilization of enzymes by multipoint covalent attachment on support surfaces.iii.- Additional stabilization of immobilized-stabilized enzyme by physical or chemical modification with polymers.These three strategies can be easily developed when enzymes are immobilized in pre-existing porous supports. In addition to that, these immobilized-stabilized derivatives are optimal to develop enzyme reaction engineering and reactor engineering. Stabilizations ranging between 1000 and 100,000 folds regarding diluted soluble enzymes are here reported.  相似文献   
2.
It is important to determine the cause of death in the case of asphyxia. However, it is difficult to conclude death by asphyxia, especially when the deceased has underlying heart disease, because there are often no specific and representative corpse signs for both asphyxia and sudden cardiac death (SCD). The aim of the present work was to investigate the potential of metabolomics to discriminate asphyxia from SCD as the cause of death. A total of thirty male Sprague–Dawley rats were used to construct models of asphyxia, SCD (interfering cause of death), and cervical dislocation (control). Untargeted and widely targeted metabolomics approaches were used to obtain rat pulmonary metabolic profiles in this study. First, the metabolic alterations resulting from asphyxia were explored. There were significant changes found in carbohydrate metabolism, the endocrine system, and the sensory system. Second, we screened potential biomarkers and built classification models to determine the cause of death. Moreover, some biomarkers remained differentiated at 24 h and 48 h postmortem, so the cause of death could still be determined after death. This study showed the application potential of metabolomics to investigate the metabolic changes occurring in the process of death, as well as to determine the cause of death on the basis of metabolic differences even after death.  相似文献   
3.
Carotenoids are an essential component of cashew and can be used in pharmaceuticals, cosmetics, natural pigment, food additives, among other applications. The present work focuses on optimizing and comparing conventional and ultrasound-assisted extraction methods. Every optimization step took place with a 1:1 (w:w) mixture of yellow and red cashew apples lyophilized and ground in a cryogenic mill. A Simplex-centroid design was applied for both methods, and the solvents acetone, methanol, ethanol, and petroleum ether were evaluated. After choosing the extractor solvent, a central composite design was applied to optimize the sample mass (59–201 mg) and extraction time (6–34 min). The optimum conditions for the extractor solvent were 38% acetone, 30% ethanol, and 32% petroleum ether for CE and a mixture of 44% acetone and 56% methanol for UAE. The best experimental conditions for UAE were a sonication time of 19 min and a sample mass of 153 mg, while the CE was 23 min and 136 mg. Comparing red and yellow cashews, red cashews showed a higher carotenoid content in both methodologies. The UAE methodology was ca. 21% faster, presented a more straightforward composition of extracting solution, showed an average yield of superior carotenoid content in all samples compared to CE. Therefore, UAE has demonstrated a simple, efficient, fast, low-cost adjustment methodology and a reliable alternative for other applications involving these bioactive compounds in the studied or similar matrix.  相似文献   
4.
5.
Zhengran Wang 《中国物理 B》2022,31(4):48202-048202
Excited-state double proton transfer (ESDPT) in the 1-[(2-hydroxy-3-methoxy-benzylidene)-hydrazonomethyl]-naphthalen-2-ol (HYDRAVH2) ligand was studied by the density functional theory and time-dependent density functional theory method. The analysis of frontier molecular orbitals, infrared spectra, and non-covalent interactions have cross-validated that the asymmetric structure has an influence on the proton transfer, which makes the proton transfer ability of the two hydrogen protons different. The potential energy surfaces in both S0 and S1 states were scanned with varying O-H bond lengths. The results of potential energy surface analysis adequately proved that the HYDRAVH2 can undergo the ESDPT process in the S1 state and the double proton transfer process is a stepwise proton transfer mechanism. Our work can pave the way towards the design and synthesis of new molecules.  相似文献   
6.
7.
Here we propose and analyze a mathematical model that aims to describe the marble sulphation process occurring in a given material. The model accounts for rugosity as well as for damaging effects. This model is characterized by some technical difficulties that seem hard to overcome from a theoretical viewpoint. Therefore, we introduce some physically reasonable modifications in order to establish the existence of a suitable notion of solution on a given time interval. Numerical simulations are presented and discussed, also in view of further research.  相似文献   
8.
In this study, the heavy to heavy decay of \begin{document}$ B^0_s\rightarrow D^{*+}D^- $\end{document} is evaluated through the factorization approach by using the final state interaction as an effective correction. Under the factorization approach, this decay mode occurs only through the annihilation process, so a small amount is produced. Feynman's rules state that six meson pairs can be assumed for the intermediate states before the final meson pairs are produced. By taking into account the effects of twelve final state interaction diagrams in the calculations, a significant correction is obtained. These effects correct the value of the branching ratio obtained by the pure factorization approach from \begin{document}$ (2.41\pm1.37)\times10^{-5} $\end{document} to \begin{document}$ (8.27\pm2.23)\times10^{-5} $\end{document}. The value obtained for the branching ratio of the \begin{document}$ B^0_s\rightarrow D^{*+}D^- $\end{document} decay is consistent with the experimental results.  相似文献   
9.
Given a graph sequence denote by T3(Gn) the number of monochromatic triangles in a uniformly random coloring of the vertices of Gn with colors. In this paper we prove a central limit theorem (CLT) for T3(Gn) with explicit error rates, using a quantitative version of the martingale CLT. We then relate this error term to the well-known fourth-moment phenomenon, which, interestingly, holds only when the number of colors satisfies . We also show that the convergence of the fourth moment is necessary to obtain a Gaussian limit for any , which, together with the above result, implies that the fourth-moment condition characterizes the limiting normal distribution of T3(Gn), whenever . Finally, to illustrate the promise of our approach, we include an alternative proof of the CLT for the number of monochromatic edges, which provides quantitative rates for the results obtained in [7].  相似文献   
10.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号